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Fig. 1. Distortion performance of up-converter. B = 1.4 V12 exp (140);

vy = 0.54 exp (759.3).
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Pig. 2. Variation of gain with signal level.

of distortion. Improvements of 2 dB in gain and 3 dB in distortion
level were achieved by increasing the pump voltage from 1 V to
22V,

IV. CONCLUSIONS

It can be concluded that although gain compression and inter-
modulation distortion are caused by the nonlinearity of the mixing
device, one cannot attribute intermodulation distortion to gain com-
pression. This conclusion was confirmed by measurements.

It can also be concluded that gain compression is caused by the
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generation of a current component at the sideband frequency which
is in antiphase with the main sideband current.
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Slant Dielectric Interface Discontinuity in a Waveguide

S. C. KASHYAP

Abstract—The reflection and transmission of electromagnetic
waves by a slant interface between two dielectric media is investi-
gated. By using suitable Green'’s functions and a geometrical optics
approximation for the field on the dielectric interface, expressions
for the transmitted and reflected fields are derived. The approximate
results obtained in this manner are compared with the available
numerical data and are shown to be fairly accurate for a number of
cases of interest.

INTRODUCTION

Recently, considerable attention has been devoted to the reflection
and transmission properties of a slant interface between two dielec-
tric media in a rectangular waveguide. Chow and Wu [1] intro-
duced a moment method with mixed basis functions and applied
it to this problem. De Jong and Offringa [27] used suitable wave-
guide Green’s functions to obtain integral representations for the
reflected, transmitted, and the unknown field distributions on the
interface. Both investigations employed numerical methods for in-
tegration. It is the purpose of this short paper to present a much
simpler approach by using waveguide Green’s functions and a
geometrical opties approximation for the field on the interface. In
order to obtain this field, the incident field is first divided into two
TEM plane waves propagating at angles =46, with respect to the
waveguide axis. Reflected and transmitted amplitudes of these
plane waves, as well as their new directions in each medium, are
determined by well-known Fresnel formulas. These plane waves
are then utilized to find the fields and their normal derivatives on
the interface. Onee the fields and their normal derivatives are known,
the reflection and transmission coefficients can be determined by
using Green’s theorem and appropriate Green’s functions. The
approximate results obtained in this manner are compared with the
available numerical data.

THEORY

Consider the slant dielectric discontinuity of Fig. 1 with a TEj,
mode incident from region I on the interface. The normalized in-
cident electric field is given by
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Fig. 1. Slant dielectric interface discontinuity in a waveguide.

E,’ = sin ( )exp (—jB2) exp (—jut). 1)

The time dependence exp (—jwt) will henceforth be omitted. Here
B is the propagation constant for the TE;, mode and is given by

w2 27

0=

2 — L2
B ko )\0

(2)
2o being the free-space wavelength.

Applying Green’s theorem to region I and choosing the proper
Green’s function, we obtain the following expression for the reflected
field at a point P:

" (Xpy 2p) = / {Gi(n-V®) — & (n-VG1)} ds. 3)
L
Here G: is the waveguide Green’s function for region I and is given
by
= Y (aTrm) 'sin (@) sin (mwzp)
m=1t a a
cexp (—Trmlz —2,1) (4)
with

2 1/2

Trm = [(-m—ﬂ) _koz] . (5)
a

L represents the boundary between medium I and IT and n is a unit
vector along the outward (with respect to the region being con-
sidered) normal on L. & is the reflected field to be evaluated along
with its normal derivative on the dielectric.interface. To obtain a
geometrical approximation for this field, (1) is first rewritten as a
sum of two plane waves as follows:

B = -;;{ exp[ (_z - ﬁz)] ~ exp [—j(% + ﬁz)]} (6)

Because the interface is slanted at an angle «, these plane waves are
incident upon the boundary at different angles given by

6’“=0,~—a 0i2=01+a

9, = sin™* (—W—)
koa

The angles of reflection (or transmission), as well as the magnitudes
of the two reflected (or transmitted) waves, will thus be different.
Waves of normalized amplitude a; and a, are reflected at angles
61 and 6y, respectively, where

(7a)

where

(7v)

01=0,~—-2a 02=0,'+2a (8)
_ €080, — (¢ — sin? 9;,) V2

cos 0 + (e — sin? ;)12

(9a)
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_ €08 0,y — (e — sin? ;)12
€08 8;, + (e — sin? 9;,)12 "

(9b)
Thus the field ® to be evaluated on the dielectric interface is given by

1
P = 5; {a1 exp ( jkox sin 6, 4 jkez cos 6,)

— ag exp (—jkox sin 8; + gkoz cos 6) }.  (10)

The reflected field at a point P in medium I can thus be determined
from (3). To obtain the modal reflection coefficients, this field (3)
must be represented in terms of waveguide modes; i.e.,

&r(x,2) = Z R, sin (ma )exp (—Tr,m?) (1)

=1

where R,, is the reflection coefficient for the TE, mode and is given
by

= (aTgm)™ / { (n- V) sin ( ”) exp (Trmz)
— & [n-v (sin (%) exp (I‘I,mz))]} ds. (12)

Substituting (10) for & in (12) and simplifying, we obtain

7 sin 9, tan 6,, sec? o

2
j‘lr tan
*{ ex
P sin @,

ay
[m2 sin?6, — [sin 0, — tan a (cos 8, + cos 6,) 2

(cos 8; + cos 8,,)

Rn =

[eosB -+ cos 0,,,]) (=1)m + 1}

- (13)
m?sin? 6; — [sin 8; + tan « (cos 6; + cos 6,) I

where 8,, is the angle at which the plane waves corresponding to the
TEno mode propagate in medium I; i.e.,

m7r

sin 0, .
o

(14)

Similar treatment of the transmitted waves in region II leads to
the following expression for the transmission coefficient for the
TEme mode:

Tn = (—aI‘n,m)“‘/ {(n-V<1>) sin (m )exp (—Trr.m?)
L a

% [n. v (sin (”%rf) exp (—FI[,mZ)>:|} ds  (15)
ma 2 1/2

Cirm = [(-—) — ekoz:l

a .

The field ® to be evaluated along with its normal derivative on the
interface is given by

with

(16)

= by exXp (jkoe”Zd? sin 65 — jkoellzz cos 0;)

— by exp (—jkoel/2x sin 8 — jkoel/2z cos 64)

(17

i in 6, . in 6,
83 = a + sin™? <&) fs = sin™t (&) —a.  (18)

€l/2 £l2

with
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b, and b; are the normalized amplitudes of the transmitted plane
waves given by

b1=1+a1 b2=1+a2. (19)

After some manipulation, the expression for the transmission co-
efficient for the TE,, mode simplifies to

Jm sin? 8; sec ¢, sec? «

7=
" 27
t.
[ exp (—1‘1r .an % (cos 8, — ét2cos ¢m)> (—1)'"+1]
sin 8;
bifcos (@ — ws) + cos ¢m ]
m?sin? 0; — [sin 6, — tan a (cos 8, — /2 cos ¢n) Jo
bo[cos (o + wi) + cos ¢m ] 20)
m?sin2 0, — [sin 6, + tan @ (cos 6, — /2 cos ¢n) I
with

. sin 0, . sin 6,
ws = sm‘1< g 1) wy = sin™L <'51_/;g> (21)
¢ represents the angle at which the plane waves corresponding to
the TEno mode propagate in medium II, and is given by

mm

ml;a . (22)

Sin ¢ =
An indication of the accuracy of the solution may be obtained by
evaluating the ratio of the sum of the reflected and the transmitted

powers to the incident power. The expression for this ratio reduces
to

2_ reflected powers + . transmitted powers

2P _

Py =
E - P, incident power

_ 2B (1~ wPsin?0) 2 4 3 | T |* (¢ — m2sin? §,)12

2
cos 6, (23)

RESULTS AND DISCUSSION

Figs. 2 and 3 show the results of computations based upon (13),
(20), and (23) for one case where a/\ = 1.2 and « = 15.94°.
These results have been compared with the available numerical
solution [1]. The agreement is found to be quite good for the cases
shown. Also, the difference between the sum of scattered powers
and the incident power, which is one of the checks on the accuracy
of the solution, is found to be less than 0.32 percent. Fig. 3 also
indicates that the phase of the reflection coefficient is independent
of the change in dielectric constant of the discontinuity. This may
be explained by the fact that the direction of the reflected ray only
depends upon the slant angle of the discontinuity and not upon its
dielectric constant. In Figs. 2 and 3 only the propagating modes
up to TEs have been indicated. However, all the propagating modes,
the number of which depends upon the dielectric constant, have
been considered for the calculation of the power ratio in Fig. 2.
The numerical data [17 for | B, | have been omitted for the sake
of clarity. In Fig. 4, the amplitudes of the first two modes in each
medium are plotted against the slant angle «. It shows that the
amplitude of the dominant modes decreases and that of the higher
modes increases with the increase of a. Consequently, more and more
power is transferred from the dominant to the higher order modes.
Finally, Fig. 5 shows the amplitude of the first two propagating
modes in each medium as a funetion of a/,.

The preceding analysis is not valid for slant angles & > 7/6 — 6,/3
because for these ecases the plane waves do not follow the simple
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paths assumed in the analysis, and undergo reflection and transmis-
sion at the dielectric boundary more than once. It may be possible
to deal with such cases by considering multlple reflections and trans-
missions at the dielectric interface.
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The Relations between Scalar Modes in a Lenslike
Medium and Vector Modes in a Self-Focusing
Optical Fiber '

G. L. YIP, MEMBER, 1EEE, AND S. NEMOTO

Abstract—The relations are established between the scalar modes
in an infinite lenslike medium and the vector modes in a self-focus-
ing optical fiber with a finite homogeneous cladding. It is shown that
both the transverse fields and the longitudinal fields of the vector
modes can be expressed in terms of the scalar modes provided the
fiber is operated in the core mode region. Otherwise, significant
discrepancies could arise. The scalar modes, however, cannot de-
scribe the cladding modes which are caused by the index discon~
tinuity at the outer surface of the cladding.

I. INTRODUCTION

In integrated and fiber optics many problems involve a medium
with an inhomogeneous refractive index. When one is confronted
with a problem related to a self-focysing optieal fiber, it is essential
to know its propagation characteristics. The inhomogeneous nature
of this fiber makes its properties more difficult to analyze than the
fiber with a homogeneous core. The simplest model of the self-
focusing fiber is that of an infinite lenslike medium. For this medium
many studies have been carried out using ray-optical method, wave-
optics method, and vector field analysis [1], [2]. In particular,
the wave-optics method yields the scalar modes. The numerical
methods for computing the propagation characteristics of self-
focusing fibers with an infinite homogeneous cladding were employed
by several authors [3], [4]. Most recently, the numerical method
based on an earlier work of Vigants [5] was applied to the more
realistic self-focusing fiber with a finile homogeneous cladding
(4] [6].

Sinee the scalar modes can be expressed in analytic functions,
it is, in many situations, convenient to approximate the vector
modes in the self-focusing fiber by the scalar modes whenever
possible. Before doing this, however, it is necessary to understand
the relations between the scalar and vector modes and the extent to
which the scalar-mode approximation is valid. So far nothing has
been reported on this subject. The purpose of this short paper is to
establish the relations between the scalar modes in an infinite
lenslike medium and the vector modes in a self-focusing fiber with
a finite homogeneous cladding, and to show the limitations of the
scalar-mode approximation. For this purpose the various propaga-
tion characteristics of the scalar modes are compared with those of
the vector modes obtained by the numerical method [4], [6].

II. THE SCALAR MODES IN A LENSLIKE MEDIUM

In a cylindrical coordinate system (r,6,z) the refractive index
distribution of the fiber is assumed to be

no[1 -~ A(r/a)?], 0<r<a
n(r) = {no(l —A), a<r<b (1)
3, b<r< o

where a and b are the inner and outer radii of cladding, and
0 < ALK 1. Let us consider an infinite lenslike medium whose
index distribution is expressed as

A(r) =mnll — (r/d)2]v2 @

The index variation in the core region of the fiber is well approxi-
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