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generation of a current component at the sideband frequency which

is in antiphase with the main sideband current.
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Slant Dielectric Interface Discontinuity in a Waveguide
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Absfracf—The reflection and transmission of electromagnetic
waves by a slant interface between two dielectric media is investi-
gated. By using suitable Green’s functions and a geometrical optics
approximation for the field on the dielectric interface, expressions
for the transmitted and reflected fields are derived. The approximate
results obtained in this manner are compared with the available
numerical data and are shown to be fairly accurate for a number of
cases of interest.I so 100
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Fig. 1. Distortion performance of up-converter. B = 1.4 VIZ exp (j140):
-y = 0.54 exp (j59.3). INTRODUCTION

Recently, considerable attention has been devoted to the reflection

and transmission properties of a slant interface between two dielec-

tric media in a rectangular waveguide. Chow and Wu [1] intro-

duced a moment method with mixed basis functions and applied

it to this problem. De Jong and Offringa [2] used suitable wave-

guide Green’s functions to obtain integral representations for the

reflected, transmitted, and the unknown field distributions on the

interface. Both investigations employed numerical methods for in-

tegration. It is the purpose of this short paper to present a much

simpler approach by using waveguide Green’s functions and a

geometrical optics approximation for the field on the interface. In

order to obtain this field, the incident field is first divided into two

TEh!l plane waves propagating at angles +oi with respect to the

waveguide axis. Reflected and transmitted amplitudes of these

plane waves, as well as their new directions in each medium, are

determined by well-known Fresnel formulas. These plane waves

are then utilized to find the fields and their normal derivatives on

the interface. Once the fields and their normal derivatives are known,

the reflection and transmission coefficients can be determined by

using Green’s theorem and appropriate Green’s functions. The

approximate results obtained in this manner are compared with the

available numerical data.
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Fig. 2. Variation of gain with sig’nal level.

of distortion. Improvements of 2dB in gain and 3 dB in distortion

level were achieved by increasing the pump voltage from 1 V to

2.2 v.

IV. CONCLUSIONS

It can be concluded that although gain compression and inter-

modulation distortion are caused by the nonlinearity of the mixing

device, one cannot attribute intermodulation distortion to gain com-

pression. This conclusion was confirmed by measurements.

It can also be concluded that gain compression is caused by the

THEORY

Consider the slant dielectric discontinuity of Fig. 1 witha TE1o

mode incident from region I on the interface. The normalized in-

cident electric field is given by
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Fig. 1. Slant dielectric interface discontinuity ina waveguide.

(1)

Thetime dependenceexp (–jcot) will henceforth be omitted. Here

~ is the propagation constant for the TE1o mode and is given by

(2)

XObeing the free-space wavelength.

Applying Green’s theorem to region I and choosing the proper

Green’s function, we obtain the following expression for the reflected

field at a point P:

*“(Z,, z=) = ! {GI(n. vi@) –@(n. vGJ}cZs. (3)
L

Here G1 is the waveguide Green’s fundion forregion Iand is given

by

‘l=:l(ar’J1sin(asine)
.exp (—rr,mlz —2P! ) (4)

with

“m=[(+k”zl (5)

L represents the boundary between medium I and II and n is a unit

vector along the outward (with respect to the region being con-

sidered) normal on L. @ is the reflected field to be evaluated along

with its normal derivative on the dielectric. interface. To obtain a

geometrical approximation for this field, (1) is first rewritten as a

sum of two plane waves as follows:

‘.i=:{exp[’(:-”z)l-exp[-’F+”z)ll“)
Because the interface is slanted at an angle a, these plane waves are

incident upon the boundary at different angles given by

9t1=Oi–a ei2=et+a (7a)
where

()0%= sin–l ~ . (7b)

The angles of reflection (or transmission), as well as the magnitudes

of the two reflected (or transmitted) waves, will thus be different.

Waves of normalized amplitude a, and a, are reflected at angles

01 and 02, respectively, where

el=ei —2a 8,=@i+2fx (8)

cos 0.2 — (e — sinz 0i2) 112
az = (9b)

cos f3~2 + (f — sinz 0i2) 1/2 “

Thus the field @to be evaluated on the dielectric interface is given by

1
* = T {aI exp (~lcw sin 81 + j%02 cos 01)

23

– a2 exp ( –jlcoz sin (h + jkoz cos 19z)). (10)

The reflected field at a point P in medium I can thus be determined

from (3). To obtain the modal reflection coefficients, this field (3)

must be represented in terms of waveguide modes; i.e.,

.

()

m~x
@’(z,z) = ~ R~ sin — exp ( – rr,mz) (11)

~ =1 a

where Rm is the reflection coefficient for the TE~o mode and is given

by

R~ = (arr,~)-’
/{ ()

(n. V@) sin ~ exp (rr,ti)
L

-+”v(sint3exp(r’&))l}ds “2)

Substituting (10) for @ in (12) and simplifying, we obtain

R = j sin 0~ tan em secz a (COS8< + cos &)
.

2T

H“. exp —
)

~- [coSe% + Cose.] (–1)” + 1
,

1 a

“ WL2 sinz 0% — [sin @. — tan a (COS 0, + COS o%) 12

a2
—

1

(13)
~2 sinz oi — [sin (?i + tan a (COS0; + cos %)12

where em is the angle at which the plane waves corresponding to the

TE~O mode propagate in medium I; i.e.,

mr
sin 0. = —.

lcOa
(14)

Similar treatment of the transmitted waves in region II leads to

the following expression for the transmission coefficient for the

TE~o mode: -

1“~ = (–arIr,,,l)–l
/{ ()

(n. V*) sin 7 exp (–rI1,nz)
L

-*[nV(sin&)exp( -~mz))]

with

“’m=[(:Y-’k02r’

& (15)

(16)

The field @ to be evaluated along with its normal derivative on the

interface is given by

@ = bl exp ( jk#2z sin 88 – jk&2z cos L%)

- bz exp ( –jk,dk sin 01 – j@12z cos 64) (17)

with

()sin 8,1

()

sin 0%2
83 = a + sin–l — 13d= sin–l — — cr. (18)~l[z ~l[z
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bl and bi are the normalized amplitudes of the transmitted plane

waves given by

bl=l+a, b,=l+ a,. (19)

After some manipulation, the exprewion for the transmission co-

efficient for the TE~O mode simplifies to

T. =
jm sinz O<sec $~ secz a

2%r

[( )1
“-(cose+’cosh) (–1)~+1. exp —I

*

[

b,[cos (a –w3) +cos+m]
.

m’sin’O, – [sin O,– tana (COSe, –d/ZCOS4~)],

b,[cos (cY+w4) +cosc#Jm]
—

1

(20)
mZsin20t — [sin,gt + tana (COS@. — 61/2COS @J~)]2

with

()

sin 0,1

()

sin eiz~3 = sin–l — ~4 = sin–l — (21 )
#2 #2 “

h represents theadeat which the plane waves corresponding to
the TEnOmode propagate inmedium II, andis given by

m7r
sin ~. = —— . (22)

~llzkfl

An indication of the accuracy of the solution may be obtained by

evaluating the ratio of the sum of the reflected and the transmitted

powers to the incident power. The expression for this ratio reduces

to

~, = XP, _ z reflected powers + ~ transmitted powers

.P:– incident power

= ~ I R~ 12(1 - n’sin’e;)’z -t z I T. 12(C - n’sinz oJW (23)

Cos 0%

RESULTS AND DISCUSSION

Figs. 2 and 3 show the results of computations based upon (13),

(20), and (23) for one case where a/ho = 1.2 and a = 15.94°.

These results have been compared with the available numerical

solution [1]. The agreement is found to be quite good for the cases

shown. Also, the cliff erence between the sum of scattered powers

and the incident power, which is one of the checks on the accuracy

of the solution, is found to be less than 0.32 percent. Fig. 3 also

indicates that the phase of the reflection coefficient is independent

of the change in dielectric constant of the discontinuity. This may

be explained by the fact that the direction of the reflected ray only

depends upon the slant angle of the discontinuity and not upon its

dielectric constant. In Figs. 2 and 3 only the propagating modes

up to TESO have been indicated. However, all the propagating modes{

the number of which depends upon the dielectric constant, have

been considered for the calculation of the power ratio in Fig. 2.

The numerical data [1] for I R, \ have been omitted for the sake

of clarity. In Fig. 4, the amplitudes of the first two modes in each

medium are plotted against the slant angle a. It shows that the

amplitude of the dominant modes decreases and that of the higher

modes increases with the increase of a. Consequently, more and more

power is transferred from the dominant to the higher order modes.

Finally, Fig. 5 shows the amplitude of the first two propagating

modes in each medium as a function of a/kO.

The preceding analysis is not valid for slant angles a > 7r/6 – 0,/3

because for these cases the plane waves do not follow the simple
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Fig. 3. Phases of various propagating modes as a function of dielectric
constant. TE ~o mode incidence with a \XO = 1.2 and a = 15.940 is
assumed.

paths assumed in the analysis, and undergo reflection and transmis-

sion at the dielectric boundary more than once. It may be possible

to deal with such cases by considering multiple reflections and trans-

missions at the dielectric interface.
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The Relations between Scalar Modes in a Lenslike

Medium and Vector Modes in a Self-Focusing
Optical Fiber

G. L. YIP, MEMBER,IEEE, ANRS. NEMOTO

AfMracf-The relations are established between the scalar modes

in an infinite lenslilre medium and the vector modes in a self-focus-

ing optical fiber with a filte homogeneous cladding. It is shown that

both the transverse fields and the longitudinal fields of the vector

modes can be expressed in terms of the scalar modes, provided the

fiber is operated in the core mode region. Otherwise, significant

T lrNTRODucTION

discrepancies could aris~. The scalar modes, however, carinot de-

scribe the cladding mod,es which are caused by tie index discon=-

tintilty at the outer surface of the cladding.

/’ In integrated and fiber optics many problems involve a medium

with an inhomogeneous refractive index. When one is confronted

with a m’oblem related to a self-focusimz o~tical fiber, it is essential
/ I I t I
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Fig. 4. Amplitudes of first two propagating modes in each medium as
a function of slant angle a. TE 10 mode incidence with a fAo = 1.2 is
assumed.
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to know its propagation characteristics. The inhomogeneous nature

of this fiber makes its properties more difficult to analyze than the

fiber with a homogeneous core. The simplest model of the self-

focusing fiber is that of an infinite lenslike medium. For this medium

many studies have been carried out using ray-optical method, wave-

op&s method, and vector field analysis [1], [2]. In particular,

the wave-optics method yields the scalar modes. The numerical

methods for computing the propagation characteristics of self-

focusing fibers with an infinite homogeneous cladding were employed

by several authors [3], [4]. Most recently, the numerical method

based on an earlier work’ of Vigants [5] was applied to the more

realistic self-focusing fiber with a finite homoge~eous cladding

[4], [6].

Since the smlar modes can be expressed in analytic functions,

it is, in many situations, convenient to approximate the vector

modes in the self-focusing fiber by the scalar modes whenever

possible. Before doing this, however, it is necessary to understand

the relations between the scalar and vector modes and the extent to

which the scalar-mode approximation is valid. So far nothing has

been reported on this subject. The purpose of this short paper is to

establish the relations between the scalar modes in an infinite

lenslike medium and the vector modes in a self~focusing fiber with

a finite homogeneous cladding, and to show the limitations of the

scalar-mode approximation. For this purpose the various propaga-

tion characteristics of the scalar modes are compared with those of

the vector modes obtained by the numerical method [4], [6].

II. THE SCALAR MODES IN A LENSI,IKE MEDIUIM

In a cylindrical coordinate system (r,o,z) the refractive index

distribution of the fiber is assumed to be

/

no[l - A (r/a) 2], 0sr5a

n (r) = no(l —A), a<r<~ (1)

{ n3, b<r<m

where a and b m-e the inner and outer radii of cladding, and

O < A<< 1. Let us consider an infinite lenslike medium whose

index distribution is expressed as

$(r-) = ql[l— (r/ti)q~&. (2)

The index variation in the core region of the fiber is well approxi-
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